Como dividir un segmento en partes iguales con el teorema de Thales

A continuación te voy a explicar cómo dividir un segmento cualquiera en partes iguales aplicando el teorema de Thales.

Si has llegado hasta aquí es porque necesitas clases de matemáticas. Si después de leer esto, quieres que te ayude a resolverlo o que te despeje alguna duda, puedes hacer dos cosas: o seguir buscando por Internet o contactar conmigo e ir directo al grano y ahorrarte tiempo.

Lo que vas a leer es tan sólo un ejemplo de lo que puedo enseñarte con mi método para enseñar matemáticas. Puedo explicarte paso a paso cualquier duda que no entiendas:

QUIERO APRENDER MATEMÁTICAS

Sólo tienes que dejarte guiar por mí verás como tu nota y tu tiempo libre subirán como la espuma.

Vamos a recordar antes qué nos dice el teorema de Thales.

Cuando dos rectas cualesquiera, r y s, son cortadas por varias rectas paralelas, los segmentos que forman la recta r son proporcionales a los segmentos que forman la recta s.

ejercicios del teorema de tales

ejercicios de teorema de tales resueltos

Ejemplo de división de un segmento en partes iguales con el teorema de Thales

Podemos utilizar el teorema de Thales para dividir un segmento cualquiera en partes iguales, independientemente de la longitud del segmento.

¿Cómo utilizamos el teorema de Thales para dividir un segmento cualquiera?

Vamos a verlo paso a paso.

Tenemos un segmento cualquiera:

Podemos dibujar una semirrecta, que tenga una dirección cualquiera, a partir de uno de los extremos del segmento.

Esa semirrecta la vamos colocando una medida cualquiera, de una longitud que conocemos, de por ejemplo de 1 cm, de 2 cm o de lo que queramos, ayudándonos de una regla. El número de veces que vamos añadiendo la medida conocida sobre la semirrecta tiene que coincidir con el número de partes en la que se quiera dividir el segmento.

Por ejemplo, voy a dividir la semirrecta en 4 partes de 1 cm cada una. La voy añadiendo una a continuación de la otra:

La última división, la unimos con el extremo B del segmento:

Finalmente, trazamos líneas paralelas a la recta 4-B, que pasen por las divisiones de la semirrecta 3, 2 y 1 y que corten al segmento AB:

El segmento AB queda dividido por tanto en 4 partes iguales y cada una de esas partes son proporcionales a las partes de la semirrecta. Ahí es donde se cumple el teorema de Thales y el cual lo hemos aprovechado para hacer esto.

Como ves, no necesitamos conocer la longitud del segmento AB para dividirlo. Por tanto, el teorema de Thales es muy útil para dividir segmentos cuya longitud no conocemos o que no podemos dividir directamente, ya que la división entre la longitud total del segmento y el número de partes no es exacta.

Podemos dividir el segmento AB en el número de partes que queramos, tan solo añadiendo más medidas a la semirrecta. Por otro lado, la semirrecta puede partir desde el punto A o desde el punto B del segmento indiferentemente y puede tener cualquier dirección, es decir, podría ser incluso perpendicular al segmento.

 

¿Necesitas ayuda con las matemáticas? ¿Quieres que te explique cualquier duda que te surja paso a paso?

Puedo enseñarte exactamente lo que necesitas aprender para aprobar las matemáticas.

He diseñado un método práctico y efectivo que te ayudará a entender las matemáticas, paso a paso, explicándote justo lo que necesitas para saber resolver todos tus ejercicios y problemas. Todo con un lenguaje sencillo y ameno que entenderás perfectamente.

Con mi método:

  • Sabrás los pasos exactos que tienes que dar para resolver tus ejercicios y problemas
  • Conseguirás resultados en muy poco tiempo, sin dedicar más horas a intentar entenderlo por tu cuenta sin llegar a ninguna conclusión

Suena bien ¿no?

¿Por qué tardar 2 horas buscando por Internet si puedes aprenderlo en menos de 20 minutos?

Sé lo que te impide entender las matemáticas y sé lo que necesitas para entenderlas. ¿Quieres informarte de como puedes aprender matemáticas conmigo? Pulsa el botón para saber más:

ENSÉÑAME MATEMÁTICAS

Uso de cookies

Usamos cookies propias y de terceros (Google) para que usted tenga la mejor experiencia de usuario, por lo que los terceros reciben información sobre tu uso de este sitio web.

Si continúas navegando, consideramos que aceptas el uso de las cookies. Puedes obtener más info o saber cómo cambiar la configuración en nuestra Política de Cookies.

ACEPTAR
Aviso de cookies